Advertisement
Review article|Articles in Press

Bariatric surgery in the prevention of obesity-associated cancers: mechanistic implications

Published:February 28, 2023DOI:https://doi.org/10.1016/j.soard.2023.02.016

      Abstract

      Obesity is associated with an increased risk of at least 13 different cancers, as well as worse cancer outcomes and increased cancer mortality. As rates continue to rise both in the United States and worldwide, obesity is poised to become the leading lifestyle-related risk factor for cancer. Currently, the most effective treatment for patients with severe obesity is bariatric surgery. Multiple cohort studies have demonstrated a consistent >30% decreased risk of cancer incidence in women, but not men, following bariatric surgery. However, the physiologic mechanisms driving obesity-associated cancer and the cancer-protective effect of bariatric surgery are not clearly defined. In this review, we highlight emerging concepts in the mechanistic understanding of obesity-associated cancer. Evidence from both human studies and preclinical animal models suggest that obesity drives carcinogenesis through dysregulation of systemic metabolism, immune dysfunction, and an altered gut microbiome. Additionally, we present related findings to suggest that bariatric surgery may disrupt and even reverse many of these mechanisms. Finally, we discuss the use of preclinical bariatric surgery animal models in the study of cancer biology. The prevention of cancer is emerging as an important indication for bariatric surgery. Elucidating the mechanisms through which bariatric surgery limits carcinogenesis is critical to developing a variety of interventions that intercept obesity-driven cancer.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Surgery for Obesity and Related Diseases
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Lauby-Secretan B.
        • Scoccianti C.
        • Loomis D.
        • et al.
        Body fatness and cancer—viewpoint of the IARC Working Group.
        N Engl J Med. 2016; 375: 794-798
        • Steele C.B.
        • Thomas C.C.
        • Henley S.J.
        • et al.
        Vital signs: trends in incidence of cancers associated with overweight and obesity—United States, 2005–2014.
        MMWR Morb Mortal Wkly Rep. 2017; 66: 1052-1058
        • Sjöström L.
        • Lindroos A.-K.
        • Peltonen M.
        • et al.
        Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery.
        N Engl J Med. 2004; 351: 2683-2693
        • Schauer P.R.
        • Bhatt D.L.
        • Kirwan J.P.
        • et al.
        Bariatric surgery versus intensive medical therapy for diabetes—3-year outcomes.
        N Engl J Med. 2014; 370: 2002-2013
        • Flum D.R.
        • Belle S.H.
        • et al.
        • Longitudinal Assessment of Bariatric Surgery (LABS) Consortium
        Perioperative safety in the longitudinal assessment of bariatric surgery.
        N Engl J Med. 2009; 361: 445-454
      1. American Society of Metabolic and Bariatric Surgery (ASMBS) [Internet]. Newberry (FL): ASMBS; 2022 [cited YYYY Mon D]. Estimate of bariatric surgery numbers, 2011–2020; [about 2 screens]. Available from: https://asmbs.org/resources/estimate-of-bariatric-surgery-numbers.

        • Christou N.V.
        • Lieberman M.
        • Sampalis F.
        • Sampalis J.S.
        Bariatric surgery reduces cancer risk in morbidly obese patients.
        Surg Obes Relat Dis. 2008; 4: 691-695
        • Adams T.D.
        • Stroup A.M.
        • Gress R.E.
        • et al.
        Cancer incidence and mortality after gastric bypass surgery.
        Obesity (Silver Spring). 2009; 17: 796-802
        • Sjöström L.
        • Gummesson A.
        • Sjöström C.D.
        • et al.
        Effects of bariatric surgery on cancer incidence in obese patients in Sweden (Swedish Obese Subjects Study): a prospective, controlled intervention trial.
        Lancet Oncol. 2009; 10: 653-662
        • Schauer D.P.
        • Feigelson H.S.
        • Koebnick C.
        • et al.
        Bariatric surgery and the risk of cancer in a large multisite cohort.
        Ann Surg. 2019; 269: 95-101
        • Aminian A.
        • Wilson R.
        • Al-Kurd A.
        • et al.
        Association of bariatric surgery with cancer risk and mortality in adults with obesity.
        JAMA. 2022; 327: 2423-2433
        • Stroud A.M.
        • Dewey E.N.
        • Husain F.A.
        • et al.
        Association between weight loss and serum biomarkers with risk of incident cancer in the Longitudinal Assessment of Bariatric Surgery cohort.
        Surg Obes Relat Dis. 2020; 16: 1086-1094
        • MacKintosh M.L.
        • Derbyshire A.E.
        • McVey R.J.
        • et al.
        The impact of obesity and bariatric surgery on circulating and tissue biomarkers of endometrial cancer risk.
        Int J Cancer. 2019; 144: 641-650
        • Sauter E.R.
        • Heckman-Stoddard B.
        Metabolic surgery and cancer risk: an opportunity for mechanistic research.
        Cancers (Basel). 2021; 13: 3183
        • Sanhueza S.
        • Simón L.
        • Cifuentes M.
        • Quest A.F.G.
        The adipocyte–macrophage relationship in cancer: a potential target for antioxidant therapy.
        Antioxidants. 2023; 12: 126
      2. Van Hul M, Cani PD. The gut microbiota in obesity and weight management: microbes as friends or foe? Nat Rev Endocrinol. Epub 2023 Jan 17.

        • Gopalakrishnan V.
        • Helmink B.A.
        • Spencer C.N.
        • Reuben A.
        • Wargo J.A.
        The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy.
        Cancer Cell. 2018; 33: 570-580
        • Miller G.D.
        • Nicklas B.J.
        • Fernandez A.
        Serial changes in inflammatory biomarkers after Roux-en-Y gastric bypass surgery.
        Surg Obes Relat Dis. 2011; 7: 618-624
        • Deng T.
        • Lyon C.J.
        • Bergin S.
        • Caligiuri M.A.
        • Hsueh W.A.
        Obesity, inflammation, and cancer.
        Annu Rev Pathol. 2016; 11: 421-449
        • Singh A.
        • Mayengbam S.S.
        • Yaduvanshi H.
        • Wani M.R.
        • Bhat M.K.
        Obesity programs macrophages to support cancer progression.
        Cancer Res. 2022; 82: 4303-4312
        • Shaikh S.R.
        • MacIver N.J.
        • Beck M.A.
        Obesity dysregulates the immune response to influenza infection and vaccination through metabolic and inflammatory mechanisms.
        Annu Rev Nutr. 2022; 42: 67-89
        • Harris B.H.L.
        • Macaulay V.M.
        • Harris D.A.
        • et al.
        Obesity: a perfect storm for carcinogenesis.
        Cancer Metastasis Rev. 2022; 41: 491-515
        • Parida S.
        • Siddharth S.
        • Sharma D.
        Adiponectin, obesity, and cancer: clash of the bigwigs in health and disease.
        Int J Mol Sci. 2019; 20: 2519
        • Park H.S.
        • Park J.Y.
        • Yu R.
        Relationship of obesity and visceral adiposity with serum concentrations of CRP, TNF-alpha and IL-6.
        Diabetes Res Clin Pract. 2005; 69: 29-35
        • Ramos-Nino M.E.
        The role of chronic inflammation in obesity-associated cancers.
        ISRN Oncol. 2013; 2013697521
        • Liberti M.V.
        • Locasale J.W.
        The Warburg effect: how does it benefit cancer cells?.
        Trends Biochem Sci. 2016; 41: 211-218
        • Zong W.-X.
        • Rabinowitz J.D.
        • White E.
        Mitochondria and cancer.
        Mol Cell. 2016; 61: 667-676
        • Sinclair P.
        • Brennan D.J.
        • le Roux C.W.
        Gut adaptation after metabolic surgery and its influences on the brain, liver and cancer.
        Nat Rev Gastroenterol Hepatol. 2018; 15: 606-624
        • Lee H.
        Obesity-associated cancers: evidence from studies in mouse models.
        Cells. 2022; 11: 1472
        • Wang Z.
        • Aguilar E.G.
        • Luna J.I.
        • et al.
        Paradoxical effects of obesity on T cell function during tumor progression and PD-1 checkpoint blockade.
        Nat Med. 2019; 25: 141-151
        • Snaebjornsson M.T.
        • Janaki-Raman S.
        • Schulze A.
        Greasing the wheels of the cancer machine: the role of lipid metabolism in cancer.
        Cell Metab. 2020; 31: 62-76
        • Lengyel E.
        • Makowski L.
        • DiGiovanni J.
        • Kolonin M.G.
        Cancer as a matter of fat: the crosstalk between adipose tissue and tumors.
        Trends Cancer. 2018; 4: 374-384
        • Liu S.
        • Wu D.
        • Fan Z.
        • et al.
        FABP4 in obesity-associated carcinogenesis: novel insights into mechanisms and therapeutic implications.
        Front Mol Biosci. 2022; 9973955
        • Raskov H.
        • Orhan A.
        • Christensen J.P.
        • Gögenur I.
        Cytotoxic CD8+ T cells in cancer and cancer immunotherapy.
        Br J Cancer. 2021; 124: 359-367
        • Guillerey C.
        NK cells in the tumor microenvironment.
        Adv Exp Med Biol. 2020; 1273: 69-90
        • Ringel A.E.
        • Drijvers J.M.
        • Baker G.J.
        • et al.
        Obesity shapes metabolism in the tumor microenvironment to suppress anti-tumor immunity.
        Cell. 2020; 183: 1848-1866.e26
        • Rosario S.R.
        • Smith R.J.
        • Patnaik S.K.
        • Liu S.
        • Barbi J.
        • Yendamuri S.
        Altered acetyl-CoA metabolism presents a new potential immunotherapy target in the obese lung microenvironment.
        Cancer Metab. 2022; 10: 17
        • Cortellini A.
        • Bersanelli M.
        • Buti S.
        • et al.
        A multicenter study of body mass index in cancer patients treated with anti-PD-1/PD-L1 immune checkpoint inhibitors: when overweight becomes favorable.
        J Immunother Cancer. 2019; 7: 57
        • Kichenadasse G.
        • Miners J.O.
        • Mangoni A.A.
        • Rowland A.
        • Hopkins A.M.
        • Sorich M.J.
        Association between body mass index and overall survival with immune checkpoint inhibitor therapy for advanced non–small cell lung cancer.
        JAMA Oncol. 2020; 6: 512-518
        • Boi S.K.
        • Orlandella R.M.
        • Gibson J.T.
        • et al.
        Obesity diminishes response to PD-1-based immunotherapies in renal cancer.
        J Immunother Cancer. 2020; 8e000725
        • Mirsoian A.
        • Bouchlaka M.N.
        • Sckisel G.D.
        • et al.
        Adiposity induces lethal cytokine storm after systemic administration of stimulatory immunotherapy regimens in aged mice.
        J Exp Med. 2014; 211: 2373-2383
        • Murphy K.A.
        • James B.R.
        • Sjaastad F.V.
        • et al.
        Elevated leptin during diet-induced obesity reduces the efficacy of tumor immunotherapy.
        J Immunol. 2018; 201: 1837-1841
        • Clemente J.C.
        • Ursell L.K.
        • Parfrey L.W.
        • Knight R.
        The impact of the gut microbiota on human health: an integrative view.
        Cell. 2012; 148: 1258-1270
        • Crommen S.
        • Mattes A.
        • Simon M.-C.
        Microbial adaptation due to gastric bypass surgery: the nutritional impact.
        Nutrients. 2020; 12: 1199
        • Dabke K.
        • Hendrick G.
        • Devkota S.
        The gut microbiome and metabolic syndrome.
        J Clin Invest. 2019; 129: 4050-4057
        • Dosch A.R.
        • Imagawa D.K.
        • Jutric Z.
        Bile metabolism and lithogenesis: an update.
        Surg Clin North Am. 2019; 99: 215-229
        • Talavera-Urquijo E.
        • Beisani M.
        • Balibrea J.M.
        • Alverdy J.C.
        Is bariatric surgery resolving NAFLD via microbiota-mediated bile acid ratio reversal? A comprehensive review.
        Surg Obes Relat Dis. 2020; 16: 1361-1369
        • Cook J.W.
        • Kennaway E.L.
        • Kennaway N.M.
        Production of tumours in mice by deoxycholate acid.
        Nature. 1940; 145: 627
        • Di Ciaula A.
        • Wang D.Q.-H.
        • Molina-Molina E.
        • et al.
        Bile acids and cancer: direct and environmental-dependent effects.
        Ann Hepatol. 2017; 16: S87-S105
        • Jang J.Y.
        • Im E.
        • Choi Y.H.
        • Kim N.D.
        Mechanism of bile acid–induced programmed cell death and drug discovery against cancer: a review.
        Int J Mol Sci. 2022; 23: 7184
        • Phelan J.P.
        • Reen F.J.
        • Caparros-Martin J.A.
        • O’Connor R.
        • O’Gara F.
        Rethinking the bile acid/gut microbiome axis in cancer.
        Oncotarget. 2017; 8: 115736-115747
        • Baptissart M.
        • Vega A.
        • Maqdasy S.
        • et al.
        Bile acids: from digestion to cancers.
        Biochimie. 2013; 95: 504-517
        • Yoshimoto S.
        • Loo T.M.
        • Atarashi K.
        • et al.
        Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome.
        Nature. 2013; 499: 97-101
        • Schwabe R.F.
        • Jobin C.
        The microbiome and cancer.
        Nat Rev Cancer. 2013; 13: 800-812
        • Sobhani I.
        • Tap J.
        • Roudot-Thoraval F.
        • et al.
        Microbial dysbiosis in colorectal cancer (CRC) patients.
        PLoS One. 2011; 6e16393
        • Chen W.
        • Liu F.
        • Ling Z.
        • Tong X.
        • Xiang C.
        Human intestinal lumen and mucosa-associated microbiota in patients with colorectal cancer.
        PLoS One. 2012; 7e39743
        • Huang J.
        • Chen Y.
        • Wang X.
        • Wang C.
        • Yang J.
        • Guan B.
        Change in adipokines and gastrointestinal hormones after bariatric surgery: a meta-analysis.
        Obes Surg. 2023; 33: 789-806
        • Iannelli A.
        • Anty R.
        • Schneck A.S.
        • Tran A.
        • Gugenheim J.
        Inflammation, insulin resistance, lipid disturbances, anthropometrics, and metabolic syndrome in morbidly obese patients: a case control study comparing laparoscopic Roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy.
        Surgery. 2011; 149: 364-370
        • Iannelli A.
        • Anty R.
        • Piche T.
        • et al.
        Impact of laparoscopic Roux-en-Y gastric bypass on metabolic syndrome, inflammation, and insulin resistance in super versus morbidly obese women.
        Obes Surg. 2009; 19: 577-582
        • Zhang J.
        • Chen X.
        • Liu W.
        • et al.
        Metabolic surgery improves the unbalanced proportion of peripheral blood myeloid dendritic cells and T lymphocytes in obese patients.
        Eur J Endocrinol. 2021; 185: 819-829
        • Kerr A.G.
        • Andersson D.P.
        • Rydén M.
        • Arner P.
        • Dahlman I.
        Long-term changes in adipose tissue gene expression following bariatric surgery.
        J Intern Med. 2020; 288: 219-233
        • Pinhel MA de S.
        • Noronha N.Y.
        • Nicoletti C.F.
        • et al.
        Changes in global transcriptional profiling of women following obesity surgery bypass.
        Obes Surg. 2018; 28: 176-186
        • Berisha S.Z.
        • Serre D.
        • Schauer P.
        • Kashyap S.R.
        • Smith J.D.
        Changes in whole blood gene expression in obese subjects with type 2 diabetes following bariatric surgery: a pilot study.
        PLoS One. 2011; 6e16729
        • Harris D.A.
        • Mina A.
        • Cabarkapa D.
        • et al.
        Sleeve gastrectomy enhances glucose utilization and remodels adipose tissue independent of weight loss.
        Am J Physiol Endocrinol Metab. 2020; 318: E678-E688
        • Lo T.
        • Haridas R.S.
        • Rudge E.J.M.
        • et al.
        Early changes in immune cell count, metabolism, and function following sleeve gastrectomy: a prospective human study.
        J Clin Endocrinol Metab. 2021; 107: e619-e630
        • Luijten J.C.H.B.M.
        • Vugts G.
        • Nieuwenhuijzen G.A.P.
        • Luyer M.D.P.
        The importance of the microbiome in bariatric surgery: a systematic review.
        Obes Surg. 2019; 29: 2338-2349
        • Li J.V.
        • Ashrafian H.
        • Sarafian M.
        • et al.
        Roux-en-Y gastric bypass-induced bacterial perturbation contributes to altered host-bacterial co-metabolic phenotype.
        Microbiome. 2021; 9: 139
        • Zhang H.
        • DiBaise J.K.
        • Zuccolo A.
        • et al.
        Human gut microbiota in obesity and after gastric bypass.
        Proc Natl Acad Sci U S A. 2009; 106: 2365-2370
        • Pournaras D.J.
        • Glicksman C.
        • Vincent R.P.
        • et al.
        The role of bile after Roux-en-Y gastric bypass in promoting weight loss and improving glycaemic control.
        Endocrinology. 2012; 153: 3613-3619
        • Stefater M.A.
        • Sandoval D.A.
        • Chambers A.P.
        • et al.
        Sleeve gastrectomy in rats improves postprandial lipid clearance by reducing intestinal triglyceride secretion.
        Gastroenterology. 2011; 141: 939-949.e1-4
        • Kohli R.
        • Bradley D.
        • Setchell K.D.
        • Eagon J.C.
        • Abumrad N.
        • Klein S.
        Weight loss induced by Roux-en-Y gastric bypass but not laparoscopic adjustable gastric banding increases circulating bile acids.
        J Clin Endocrinol Metab. 2013; 98: E708-E712
        • Ahlin S.
        • Cefalo C.
        • Bondia-Pons I.
        • et al.
        Bile acid changes after metabolic surgery are linked to improvement in insulin sensitivity.
        Br J Surg. 2019; 106: 1178-1186
        • Haluzíková D.
        • Lacinová Z.
        • Kaválková P.
        • et al.
        Laparoscopic sleeve gastrectomy differentially affects serum concentrations of FGF-19 and FGF-21 in morbidly obese subjects.
        Obesity. 2013; 21: 1335-1342
        • Gerhard G.S.
        • Styer A.M.
        • Wood G.C.
        • et al.
        A role for fibroblast growth factor 19 and bile acids in diabetes remission after Roux-en-Y gastric bypass.
        Diabetes Care. 2013; 36: 1859-1864
        • Chaudhari S.N.
        • Harris D.A.
        • Aliakbarian H.
        • et al.
        Bariatric surgery reveals a gut-restricted TGR5 agonist with anti-diabetic effects.
        Nat Chem Biol. 2021; 17: 20-29
        • Barré-Sinoussi F.
        • Montagutelli X.
        Animal models are essential to biological research: issues and perspectives.
        Future Sci OA. 2015; 1: FSO63
        • Glenny E.M.
        • Coleman M.F.
        • Giles E.D.
        • Wellberg E.A.
        • Hursting S.D.
        Designing relevant preclinical rodent models for studying links between nutrition, obesity, metabolism, and cancer.
        Annu Rev Nutr. 2021; 41: 253-282
        • Bohm M.S.
        • Sipe L.M.
        • Pye M.E.
        • Davis M.J.
        • Pierre J.F.
        • Makowski L.
        The role of obesity and bariatric surgery-induced weight loss in breast cancer.
        Cancer Metastasis Rev. 2022; 41: 673-695
        • Stevenson M.
        • Lee J.
        • Lau R.G.
        • Brathwaite C.E.M.
        • Ragolia L.
        Surgical mouse models of vertical sleeve gastrectomy and Roux-en Y gastric bypass: a review.
        Obes Surg. 2019; 29: 4084-4094
        • Sipe L.M.
        • Chaib M.
        • Korba E.B.
        • et al.
        Response to immune checkpoint blockade improved in pre-clinical model of breast cancer after bariatric surgery.
        Elife. 2022; 11e79143
        • Feigelson H.S.
        • Caan B.
        • Weinmann S.
        • et al.
        Bariatric surgery is associated with reduced risk of breast cancer in both premenopausal and postmenopausal women.
        Ann Surg. 2020; 272: 1053-1059
        • He R.
        • Yin Y.
        • Yin W.
        • Li Y.
        • Zhao J.
        • Zhang W.
        Prevention of pancreatic acinar cell carcinoma by Roux-en-Y gastric bypass surgery.
        Nat Commun. 2018; 9: 4183
      3. Bulsei J, Chierici A, Alifano M, et al. Bariatric surgery reduces the risk of pancreatic cancer in individuals with obesity before the age of 50 years: a nationwide administrative data study in France. Eur J Surg Oncol. Epub 2022 Nov 9.

        • Ruze R.
        • Xiong Y.-C.
        • Li J.-W.
        • et al.
        Sleeve gastrectomy ameliorates endothelial function and prevents lung cancer by normalizing endothelin-1 axis in obese and diabetic rats.
        World J Gastroenterol. 2020; 26: 2599-2617